

The Universe

Everything that exists anywhere

<u>Geocentric View</u> Earth is at the centre of the universe (Aristotle)

<u>Heliocentric View</u> Sun is the centre, Earth travels westward around it (Copernicus)

Galaxies

Massíve, rotating, gravitationally bound system that consists of stars, planets, dust, gas, and other celestial objects

> Our galaxy is? Mílky Way

Solar Systems

A star, together with the planets, moons, asteroids, comets and dust, which revolve around it in its gravitational field.

Our star is?

Thesun

Stars

הא הא הא הא הא הא הא הא

Massive collection of gases, held together by its own gravity and emitting huge amounts of energy (fusion = nuclear reaction)

Our sun is a star – enormous ball of hot, glowing gases

All stars are **LUMINOUS**

Luminous vs Non-Luminous

na na na na na na

<u>Lumínous</u>: Símply means the object produces its own light - Only stars do this!

<u>Non-Lumínous</u>: Cannot see with naked eye - they need to reflect light from a star - Planets & Moons are non-luminous

Planets

A large, round celestíal object that travels around a star

Terrestrial = rocky surface similar to Earth (the 4 closest to the sun: Mercury, Venus, Earth & Mars)

Gas Giants = composed of gas & liquids (the 4 furthest from the sun: Jupiter, Saturn, Uranus, Neptune)

Moons

Type of satellite: object that orbits a planet

Earth has one moon

Mercury and Venus have none

Jupiter and Saturn each have 60 or more

Other objects found in our solar system

- <u>asteroids</u>: small rocky objects rich in minerals, orbit around sun, from a ring called the asteroid belt (between Mars & Jupiter – separates the terrestrial and gas planets)
- <u>comets</u>: large chunks of ice and dust travelling in long elliptical orbits around the sun
- <u>meteors/meteoroid/meteorites:</u> space rocks that look like streaks of light as they heat up due to friction with our atmosphere, vapourize, or reach Earth (meteorite hit Russia in 2013)
- space station: large satellite designed to support humans in order to conduct research & other space-related activities (orbits Earth)

SNC1DI GRCI Science <u>Scientific Notation</u>

Scientific notation is a way of writing numbers that are **too big** or **too small** to be conveniently written in decimal form.

Standard Form	Scientific Notation
54 000 000 000	
8 745 000 000 000	
0. 000 000 000 583	
0.00000066	

Remember: Only one number goes in front of the decimal!

Examples of values that can be written as scientific notation are:

The mass of the Earth is about
5 973 600 000 000 000 000 000 000 kg.
In scientific notation, this is written 5.9736×10²⁴ kg.

• The circumference of the Earth's is approximately 40 000 000 m. In scientific notation, this is 4×10⁷ m.

Measuring Distance in Space

Astronomical Unit (AU):

Measuring distance IN our Solar System

Average distance from Earth to Sun (1.5 \times 10⁷ km = 15 million km)

Ex: Jupiter is 780 million km from the Sun. This is equal to 5.2 AU (in other words, 5 times further from the Sun than Earth is)

Light Years (ly)

Measuring distance **BEYOND** our Solar System

Distance light travels in one year (9.46 $\times 10^{12}$ km = almost 10 trillion)

Ex: Proxima Centauri is 4.01 x 10¹³ km from Earth. This is equal to 4.24 ly.

How to calculate ly?

Ex: Proxima Centauri is 4.01 x 10¹³ km from Earth. This is equal to 4.24 ly.

How did we solve this?

 $1 \text{ ly} = 9.46 \times 10^{12} \text{ km}$

If Proxima Centrauri is 4.01 x 10^{13} km from Earth and 1 ly = 9.46 x 10^{12} km, then:

 4.01×10^{13} km x 1 ly = 4.24 ly

9.46 x 1012 km

