The Universe

Touring the Night Sky

Section 8.1

Everything that exists anywhere

Geocentric View
Earth is at the centre of the universe (Aristotle)

Heliocentric View
Sun is the centre, Earth travels westward around it (Copernicus)

Galaxies

Massive, rotating, gravitationally bound system that consists of stars, planets, dust, gas, and other celestial objects

Solar Systems

A star, together with the planets, moons, asteroids, comets and dust, which revolve around it in its gravitational field.

Our star is?
The sun

ศчч

Stars

Massive collection of gases, held together by its own gravity and emitting huge amounts of energy (fusion $=$ nuclear reaction)

Our sun is a star - enormous ball of hot, glowing gases

All stars are LUMINOUS

Luminous vs Non-

 LuminousLuminous: Simply means the object produces its own light - Only stars do this! Non-Luminous: cannot see with naked eye - they weed to reflect light from a star

- Planets \& Moons are non-luminous

Planets

A large, round celestial object that travels around a star

Terrestrial = rocky surface similar to Earth (the 4 closest to the sun: Mercury, Venus, Earth \& Mars)

Gas Giants = composed of gas \& liquids
(the 4 furthest from the sun: Jupiter, Saturn, Uranus, Neptune)

Moons

Type of satellite: object that orbits a planet
Earth has one moon
Mercury and Venus have none
Jupiter and Saturn each have 60 or more

Other objects found in our solar system

- asteroids: small rocky objects rich in minerals, orbit around sun, from a ring called the asteroid belt (between Mars \& Jupiter separates the terrestrial and gas planets)
- comets: large chunks of ice and dust travelling in long elliptical orbits around the sun
- meteors/meteoroid/meteorites: space rocks that look like streaks of light as they heat up due to friction with our atmosphere, vapourize, or reach Earth (meteorite hit Russia in 2013)
- space station: large satellite designed to support humans in order to conduct research \& other space-related activities (orbits Earth)

Scientific notation is a way of writing numbers that are too big or 00 small to be conveniently written in decimal form.

Standard Form	Scientific Notation
54000000000	
8745000000000	
0.000000000583	
0.00000066	

Remember: Only one number goes in front of the decimal
Examples of values that can be written as scientific notation are:

- The mass of an electron is approximately 000000000000000000000000000000091093822 kg In scientific notation, this is written $9.1093822 \times 10^{-\mathbf{3 1}} \mathbf{~ k g}$.
- The mass of the Earth is about

5973600000000000000000000 kg
In scientific notation, this is written $5.9736 \times \mathbf{1 0}^{\mathbf{2 4}} \mathbf{~ k g}$.

- The circumference of the Earth's is approximately 000000 m
In scientific notation, this is $4 \times 10^{7} \mathrm{~m}$.

 Measuring Distance in Space

Astronomical Unit (AU):

Measuring distance IN our Solar System
Average distance from Earth to Sun ($1.5 \times 10^{7} \mathrm{~km}=15$ million km)
Ex: Jupiter is 780 million km from the Sun. This is equal to 5.2 AU (in other words, 5 times further from the Sun than Earth is)

Light Years (ly)
Measuring distance BEYOND our Solar System
Distance light travels in one year ($9.46 \times 10^{12} \mathrm{~km}=$ almost 10 trillion) Ex: Proxima Centauri is $4.01 \times 10^{13} \mathrm{~km}$ from Earth. This is equal to 4.24 ly .

How to calculate ly?

Ex: Proxima Centauri is $4.01 \times 10^{13} \mathrm{~km}$ from Earth. This is equal to 4.24 ly. How did we solve this?
$1 \mathrm{ly}=9.46 \times 10^{12} \mathrm{~km}$
If Proxima Centrauri is $4.01 \times 10^{13} \mathrm{~km}$ from Earth and $1 \mathrm{ly}=9.46 \times 10^{12} \mathrm{~km}$, then:

$$
x \frac{1 \text { ly }}{9.46 \times 10^{12} \mathrm{Rm}}=4.24 \mathrm{ly}
$$

Homework

- Read section 8.1 (p. 305)
- DO Q's\#1-9 (p. 308)
- Read ahead, section 8.2 (p. 309)

