

Synthesis

- combination of two or more reactants to form a more complex substance (product)
- □ A + B ---> AB

 \Box i.e.: 2 H_{2(l)} + O_{2(l)} ---> 2 H₂O_(g)

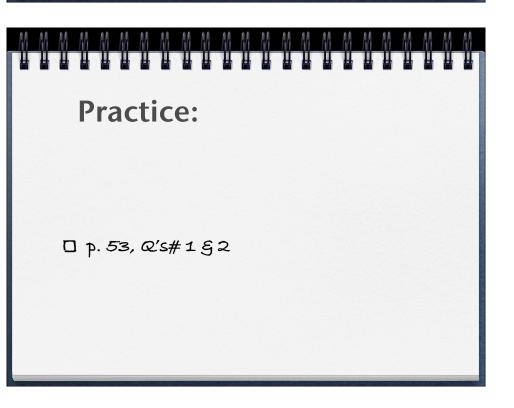
5 Types of Reactions

- 🛛 Synthesis
- Combustion
- Decomposition
- 🗆 Síngle Dísplacement
- 🗆 Double Dísplacement

Synthesis: Acid Rain

Car exhaust reacts with oxygen:

 $2 SO_{2(g)} + O_{2(g)} \longrightarrow 2 SO_{3(g)}$


sulfur trioxide reacts with water vapour in the air:

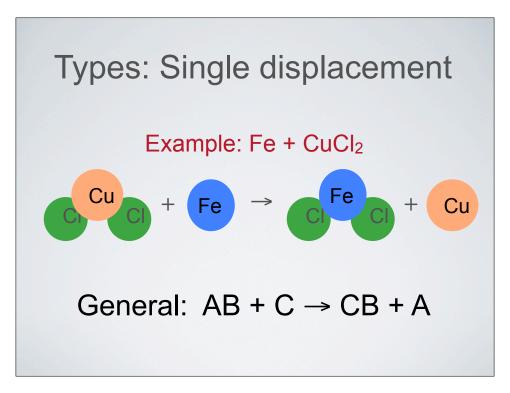
 $SO_{3(g)} + H_2O_{(l)} \longrightarrow H_2SO_{4(aq)}$

Combustion						
 Although it is common to call any reaction with O₂ a combustion reaction, we will refer to it as follows: 						
2 C ₈ H _{18(g)} + 25 O _{2(g)}	\rightarrow 16 CO _{2(g)} + 18 H ₂ O _(g)					
fuel oxygen (hydrocarbon)	carbon water dioxide vapour					
Decomposition: Death Starts with decompositi $2 \text{ KClO}_{3(g)} \longrightarrow$ Then combustion: $C_6H_{12}O_{6(s)} + 6 O_{2(g)} \longrightarrow$	-					

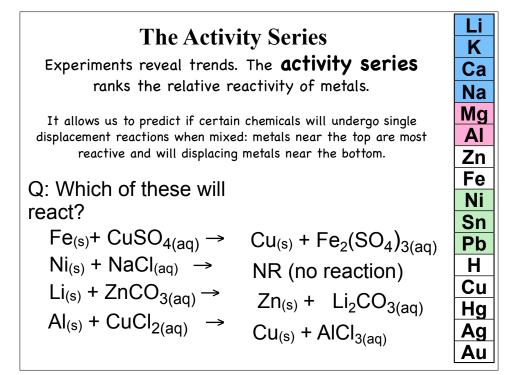
Decomposition

- breakdown of larger, complex substances into smaller, simpler entities
- □ AB ---> A + B
- \Box ie.: 2 H₂O_{2(l)} ---> 2 H₂O_(l) + O_{2(g)}

Single Displacement

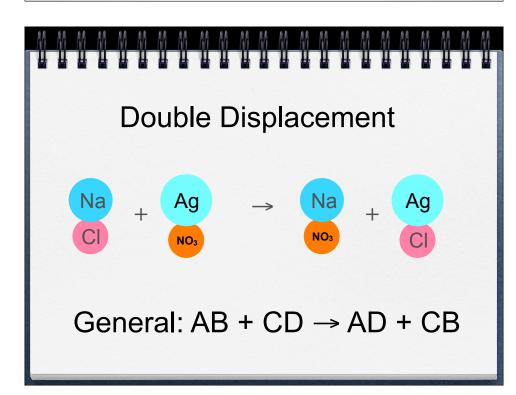

• Most metals occur naturally as ores (oxides - MgO, sulfides, halides, carbonates, sulfates, silicates)

•To isolate the metals from their ores:


I) react them with a solution to form an aqueous salt

2) replace one element with another (usually cheaper) in order to isolate the desired metal

Examples


Examples: 1) $CuO_{(s)} + H_2SO_{4(aq)} \longrightarrow CuSO_{4(aq)} + H_2O_{(l)}$ 1b) $CuSO_{4(aq)} + Fe_{(s)} \longrightarrow FeSO_{4(aq)} + Cu_{(s)}$

Other Uses for Activity Series

• Anti-Corrosion: Copper plating (lower on the series = less likely to react)

- Galvanizing: Zinc plating (higher on the series, reacts to form insoluble oxide = protection)
- Alloy: Stainless steel iron, carbon, chromium, nickel = less reactive (chromium) and harder (carbon)

Single Displacement Summary

- used widely in/for metallurgy
- Reactivity series allows us to create more resistive materials galvanizing and alloys

Identification of NaCl $NaCl_{(aq)} + AgNO_{3}(aq) \longrightarrow NaNO_{3}(?) + AgCl_{(?)}$ $AB + CD \longrightarrow AD + BC$ What are the subscripts on our products? Use the solubility chart!!!

SOLUBILITY OF IONIC COMPOUNDS AT SATP									
			Cl [°] , Br [°] , I [°]	S-2	OH.	Anions SO4 ²⁻	CO ₃ ²⁻ .	C2H3O2	NO ₃
			, ,			•	CO ₃ ²⁻ , PO ₄ ³⁻ , SO ₃ ²⁻		
	Cations	High solubility (aq) ≥0.1 mol/L	most	Group 1, Group 2, NH4 ⁺¹	Group 1, NH4 ⁺¹ , Sr ²⁺ , Ba ²⁺ , Tl ⁺	most	Group 1, NH4 ⁺¹	most	all
		Low Solubility (s) <0.1 mol/L	Ag ⁺ , Pb ^{2+,} Tl ⁺ , Hg ₂ ²⁺ , Cu ⁺	most	most	$Ag^{+}, Pb^{2+}, Ca^{2+}, Ba^{2+}, Sr^{2+}, Ra^{2+}$	most	Ag ⁺	none

Identification of NaCl

$NaCl_{(aq)} + Aq$	$gNO_{3(aq)} \longrightarrow NaNO_{3(aq)}$	³ (aq) ⁺ Agcl (s)			
1) Find NO_3^-	Is it soluble with Na ⁺ ?	yes!			
NaNO₃ís aqu 2) Fínd Cl⁻	is ít soluble with Ag+?	NO!			
Agclis non-aqueous = (s) = precipitate					