Name:

GRCI SCH 3UI

Average Atomic Mass Calculations

The values of atomic mass (mass number) in the periodic table for the elements are the "AVERAGE ATOMIC " masses since most elements consist of 2 or more isotopes.

The formula used to calculate the average atomic mass (AAM) is:

AAM = (atomic mass of isotope#1)(<u>% ab</u> undance) ·	+ (atomic mass of isotope #2)(<u>%</u> abundance) + etc
100	100
AAM = (atomic mass of isotope#1)(decimal abundance)	+ (atomic mass of isotope #2)(decimal abundance) + etc

Questions

1. Determine the average atomic mass of the following elements:

Element	Atomic mass of isotope (u)	% abundance of isotope
a) Lithium	6.01512	7.42
	7.01600	92.58
b) Boron	10.01290	19.78
	11.00931	80.22
c) Magnesium	23.98504	78.70
	24.98584	10.13
	25.98259	11.17

- 2. Chlorine consists of two isotopes CI-35 (atomic mass is 34.9689 u) and CI-37 (atomic mass is 36.9659 u). If the average atomic mass of chlorine is 35.453 u, calculate the % abundance of each isotope.
- 3. Silver consists of two naturally occurring isotopes: Ag-107 has a % abundance of 51.82, and Ag-109 has a % abundance of 48.18 %. Calculate the approximate average atomic mass of silver. Since the atomic mass is not provided, use the mass number.
- 4. Neon consists of three isotopes of consecutive number. The isotope with the lowest mass number has a percent abundance of 90.90%, the next isotope makes up 0.30 % of Neon, and the third isotope has 8.80 %. The average atomic mass of neon is 20.18 u. Calculate the mass numbers of the three isotopes.

If you are up for a mathematical challenge, try this question. Don't be spaced out about it.

5. Chris Hadfield recently discovered the element Marsium (just kidding). However, this hypothetical element consists of three isotopes: ⁹⁵Ms, ⁹⁸Ms and ¹⁰²Ms. The lightest and heaviest isotopes are present in equal amounts. If the average atomic mass is 98.1 u, calculate the percent abundance of each of the isotopes.

Date: _____